精彩回顾 | Flutter Engage China 视频合集

在三月底的 Flutter Engage China 活动中,Google Flutter 团队和来自国内的开发者们共同探讨和交流 Flutter 的最新更新、实践和未来的发展。虽然只能通过线上交流,但是在活动中嘉宾们的精彩分享和讨论也吸引了众多 Flutter 开发者互动交流,畅谈创新和合作。为了帮助更多开发者们更顺利地进行开发工作,我们将公开活动中嘉宾们分享的内容,并带您回顾精彩亮点,希望能对您有所帮助。

重点内容回顾

Flutter 2 更新介绍

Flutter 2 的发布带来了许多振奋人心的内容。视频中,Google Flutter 团队的产品经理樊舟颖 (Zoey) 和我们一起回顾了发布的重点更新,包括 Flutter 2 和 Dart 2.12 中的新增功能,以及 Flutter 开发者是如何使用 Flutter 的。

使用多个轻型引擎

Google Flutter 移动端团队负责人于潇介绍了如何使用 Flutter 2 里的新 API 来创造多个实例的 Flutter 引擎。使用多个 Flutter 引擎可以帮助使用混合栈的 Flutter 代码保持封装性。也可以用来实现低内存消耗的多卡片 Flutter 界面。

解析混合集成 PlatformViews

混合集成 PlatformViews 帮助了 Flutter 实现嵌入 Android 和 iOS UI。很多非常流行的 Plugins 都使用了混合集成 PlatformViews,比如 google_maps_flutter, webview_flutter,以及最近刚进入测试阶段的 google_mobile_ads。Google Flutter 团队的软件工程师杨天航 (Chris) 在视频中介绍了解析混合集成 PlatformViews 在引擎层的实现方法。

UC Flutter 基础建设深度优化

随着阿里巴巴集团的 Flutter 应用体量越来越大,业务面临的体验和性能问题也越来越复杂。来自阿里巴巴 UC 客户端研发团队的刘森森分享了 UC 团队在 Flutter 实践中遇到的痛点问题,以及在引擎层和应用层的实际解决方案。

字节跳动 Flutter 业务大规模落地及技术演进

来自字节跳动的 Flutter 技术负责人袁辉辉在视频中介绍了 Flutter 业务的大规模落地 (字节跳动已有超过 60 个 App 选择使用 Flutter),以及 ByteFlutter 的技术演进和在嵌入式设备的应用。同时,袁辉辉也分享了字节跳动在技术开源和生态共建的后续规划和思考。

Flutter 社区开发者分享

Google Flutter 团队产品经理 Zoey 邀请了三位来自 Flutter 社区的开发者刘彦博 (Flutter GDE)、王鑫磊、李承峻 (Alex) 进行圆桌讨论,分享 Flutter 的开发经验和对社区建设的思考。

在交流中成长

积极健康的交流平台是开发者们成长的土壤,诚恳有效的信息交流是开发工作的养分。如果您在观看视频的过程中有任何问题和反馈,欢迎到谷歌开发者公众号留言发表您的想法,我们会对留言进行整理反馈,请持续关注。很高兴能看到大家为构建良好社区做出努力,请畅所欲言!

Flutter 在不断更新进步以使开发者们的工作更加得心应手,我们期待看到您使用 Flutter 来构建更多精彩的应用!

相关推荐
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Windows10</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页